এসএসসি সাধারণ গণিত অনুশীলনী ৫.২ প্রশ্ন সমাধান
নবম-দশম শ্রেণির বা এসএসসি সাধারণ গণিত অনুশীলনী 5.2 প্রশ্ন সমাধান নিচে দেওয়া হলো। এসএসসি গণিত অনুশীলনী 5.2 অনুশীলনীর প্রশ্ন ও সমাধান প্রশ্ন \ 1 \ x কে চলক ধরে a2x + b = 0 সমীকরণটির ঘাত নিচের কোনটি? ক. 3 খ. 2 ✅ 1 ঘ. 0 প্রশ্ন \ 2 \ নিচের কোনটি অভেদ? (x + 1)2 + (x – 1)2 = 4x ✅ (x + 1)2 + (x – 1)2 = 2(x2 + 1) (a + b)2 – (a – b)2 = 2ab (a – b)2 = a2 + 2ab + b2 ব্যাখ্যা: বামপক্ষ = (x + 1)2 + (x – 1)2 = x2 + 2x + 1 + x2 – 2x + 1 = 2×2 + 2 = 2(x2 + 1) প্রশ্ন \ 3 \ (x – 4)2 = 0 সমীকরণের মূল কয়টি? ক. 1টি ✅ 2টি গ. 3টি ঘ. 4টি ব্যাখ্যা : (x – 4)2 = 0 বা, (x – 4)(x – 4) = 0 x = 4, 4 সুতরাং প্রদত্ত সমীকরণের মূল 2টি প্রশ্ন \ 4 \ x2 – x – 12 = 0 সমীকরণের মূলদ্বয় নিচের কোনটি? ক. 3, 4 খ. 3, – 4 ✅ – 3, 4 ঘ. – 3, – 4 ব্যাখ্যা: : x2 – x – 12 = 0 বা, x2 – 4x + 3x – 12 = 0 বা, x(x – 4) + 3(x – 4) = 0 বা, (x – 4)(x + 3) = 0 ∴x = 4, -3 প্রশ্ন \ 5 \ 3×2 – x + 5 = 0 সমীকরণে x এর সহগ কত? ক. 3 খ. 2 গ. 1 ✅ -1 ব্যাখ্যা : 3×2 – x + 5 = 0 ∴ 3×2 + (-1) x + 5 = 0 এখানে, x এর সহগ – 1 6. দুইটি বীজগণিতিক রাশি x ও y এর গুণফল xy=0 হলে (i) x=0 অথবা y=0 (ii) x=0 এবং y≠0 (ii) x≠0 এবং y=0 নিচের কোনটি সঠিক? ক) i ও ii খ) ii ও iii গ) i ও iii ✅ i, ii ও iii প্রশ্ন \ 7 \x2 – (a + b) x + ab = 0 সমীকরণের সমাধান সেট নিচের কোনটি? ✅ {a, b} খ.{a, -b} গ. { – a, b} ঘ. { – a, – b} ব্যাখ্যা : x2 – (a + b) x + ab = 0 বা, x2 – ax – bx + ab = 0 বা, x(x – a) – b(x – a) = 0 বা, (x – a)(x – b) = 0 \ x = a, b \ mgvavb †mU S = {a, b} দুই অঙ্কবিশিষ্ট একটি সংখ্যার দশক স্থানীয় অঙ্ক একক স্থানীয় অঙ্কের দ্বিগুণ। এই তথ্যের আলোকে নিচের প্রশ্নগুলোর উত্তর দাও। 8) একক স্থানীয় অঙ্ক X হলে, সংখ্যাটি কত? ক. 2x খ. 3x গ. 12x ✅ 21x ব্যাখ্যা : দেওয়া আছে, একক স্থানীয় অঙ্ক x ∴ দশক স্থানীয় অঙ্ক 2x ∴ সংখ্যাটি =x + 10 . 2x = 21x 9) অঙ্কদ্বয় স্থান বিনিময় করলে সংখ্যাটি কত হবে? ক. 3x খ. 4x ✅ 12x ঘ. 21x ব্যাখ্যা : অঙ্কদ্বয় স্থান বিনিময় করলে সংখ্যাটি = 10.x + 2x = 12x 10) x = 2 হলে, মূল সংখ্যার সাথে স্থান বিনিময়কৃত সংখ্যার পার্থক্য কত? ✅ 18 খ. 20 গ. 34 ঘ. 36 ব্যাখ্যা : (1) হতে পাই, সংখ্যাটি 21x = 21.2 = 42 (2) নং হতে পাই, সংখ্যাটি = 12x = 12.2 = 24 সংখ্যা দুইটির পার্থক্য, 42 – 24 = 18 🔶 সমাধান কর (11 – 17) : প্রশ্ন \ 12 \ সমাধান : হয়, অথবা, বা, বা, বা, বা, বা, বা, ∴ x = ∴ x = নির্ণেয় সমাধান : x = অথবা প্রশ্ন \ 11 \ (y + 5)(y – 5) = 24 সমাধান: (y + 5)(y – 5) = 24 বা, y2 – 52 = 24 বা, y2 – 25 = 24 বা, y2 = 24 + 25 [পক্ষান্তর করে] বা, y = ± \ y = ± 7 নির্ণেয় সমাধান y = ± 7 প্রশ্ন \ 13 \ 2(z2 – 9) + 9z = 0 সমাধান: 2(z2 – 9) + 9z = 0 বা, 2z2 – 18 + 9z = 0 বা, 2z2 + 9z – 18 = 0 বা, 2z2 + 12z – 3z – 18 = 0 বা, 2z (z + 6) – 3(z + 6) = 0 বা, (z + 6) (2z – 3) = 0 হয় z + 6 = 0 অথবা,, 2z – 3 = 0 \ z = – 6 বা, 2z = 3 \ z = নির্নেয় সমাধান: z = – 6 অথবা,, প্রশ্ন \ 14 \ সমাধান : বা, বা, 20z2 + 10z – 4z – 2 = 23z + 1 বা, 20z2 + 6z – 23z – 2 – 1 = 0 বা, 20z2 – 17z – 3 = 0 বা, 20z2 – 20z + 3z – 3 = 0 বা, 20z(z – 1) + 3(z – 1) = 0 বা, (z – 1) (20z + 3) = 0 হয় z – 1 = 0 অথবা,, 20z + 3 = 0 ∴z = 1 বা, 20z =- নির্নেয় সমাধান: z = 1 অথবা – প্রশ্ন \ 15 \ সমাধান : বা, বা, বা, বা, 6(x + 2)(x – 2) = 4(x – 6) [আড় গুগণ করে] বা, 6(x2 – 4) = 4(x – 6) বা, 6×2 – 24 = 4x – 24 বা, 6×2 – 24 – 4x + 24 = 0 [পক্ষান্তর করে] বা, 6×2 – 4x = 0 বা, 3×2 – 2x = 0 [ 2 দ্বারা ভাগ করে ] বা, x(3x – 2) = 0 হয় x = 0 অথবা,, 3x – 2 = 0 বা, 3x = 2 ∴x = নির্নেয় সমাধান: x = 0 অথবা,, প্রশ্ন \ 16 \ সমাধান : বা, [পক্ষান্তর করে] বা, বা, [আড়গুণন করে] বা, বা, ∴ [বর্গমূল করে] নির্ণেয় সমাধান : প্রশ্ন \ 17 \ সমাধান : বা, [পক্ষান্তর করে] বা, বা, বা, বা, হয়, x = 0 অথবা, বা, বা, বা, , a(x – a) = b(x – ba) [আড়গুণন করে] বা, ax – a2 = bx – b2 ax – bx = a2 – b2 বা,x
এসএসসি সাধারণ গণিত অনুশীলনী ৫.২ প্রশ্ন সমাধান Read More »