এসএসসি সাধারণ গণিত অনুশীলনী ৫.১ এক চলকবিশিষ্ট সমীকরণ প্রশ্ন সমাধান
নবম-দশম শ্রেণির বা এসএসসি সাধারণ গণিত অনুশীলনী ৫.১ এক চলকবিশিষ্ট সমীকরণ প্রশ্ন সমাধান নিচে দেওয়া হলো। এসএসসি সাধারণ গণিত অনুশীলনী ৫.১ প্রশ্ন সমাধান চলক : যখন কোনো অক্ষর প্রতীক কোনো সেটের উপাদান বোঝায় তখন তাকে চলক বলে। একটি সেট A = {x : x Î R , 1 £ x £ 10} হয়, তবে x-এর মান ১ থেকে ১০ পর্যন্ত যেকোনো বাস্তব সংখ্যা হতে পারে। এখানে, x হলো চলক। 🔶 সমীকরণের ঘাত : কোনো সমীকরণের চলকের সর্বোচ্চ ঘাতকে সমীকরণটির ঘাত বলে। x + 1 = 5, 2x – 1 = x + 5, y + 7 = 2y – 3 সমীকরণগুলোর প্রত্যেকটির ঘাত ১; এগুলো এক চলকবিশিষ্ট একঘাত সমীকরণ। 🔶 সমীকরণ ও অভেদ : সমীকরণ : অন্ততপক্ষে একটি চলকযুক্ত সমান চিহ্ন সংবলিত খোলা বাক্যকে সমীকরণ বা সরল সমীকরণ বলে। যেমন, (3x + 5) – 6 = 5x + 9 একটি সমীকরণ যেখানে, x একটি চলক। সমীকরণে সমান চিহ্নের দুইপক্ষে দুইটি বহুপদী থাকে, অথবা একপক্ষে (প্রধানত ডানপক্ষে) শূন্য থাকতে পারে। দুই পক্ষের বহুপদীর চলকের সর্বোচ্চ ঘাত সমান না-ও হতে পারে। 🔶 সমীকরণের মূল : চলকের সর্বোচ্চ ঘাতের যে মান বা মানগুলো দ্বারা সমীকরণটি সিদ্ধ হয়, তাকে ঐ সমীকরণের মূল বলে। 🔶 অভেদ : কোনো চলকের সকল মানের জন্য যদি সমীকরণটি সিদ্ধ হয় তবে তা একটি অভেদ। যেমন, (x + 1)2 – (x – 1)2 = 4x একটি অভেদ। এটি x এর সকল মানের জন্য সিদ্ধ হয়। প্রত্যেক বীজগণিতীয় সূত্র একটি অভেদ। অনুশীলনীর প্রশ্ন ও সমাধান 👉 সমাধান কর (১-১০) : প্রশ্ন \ ১ \ সমাধান : দেওয়া আছে, বা, বা, y(a2 – b2) = ab(a2 – b2) [আড়গুণন করে] বা, y = ab [উভয়পক্ষকে (a2 – b2) দ্বারা ভাগ করে] নির্ণেয় সমাধান : y = ab প্রশ্ন \ ২ \ (z + 1) (z – 2) = (z – 4) (z + 2) সমাধান : দেওয়া আছে, (z + 1) (z – 2) = (z – 4) (z + 2) বা,z2 – 2z + z – 2 = z2 + 2z – 4z – 8 বা,z2 – z – 2 = z2 – 2z – 8 বা,z2 – z – z2 + 2z = – 8 + 2 [পক্ষান্তর করে] ∴ z = – 6 (Ans.) প্রশ্ন \ ৩ \ সমাধান : দেওয়া আছে, বা, বা, [পক্ষান্তর করে ] বা, বা, [ উভয়পক্ষকে (৫ী + ৪) দ্বারা গুণ করে।] বা, বা, 3x + 2 = – 2x – 1 বা, 3x + 2x = – 1 – 2 বা, 5x = – 3 ∴ প্রশ্ন \ ৪ \ সমাধান : দেওয়া আছে, বা, [পক্ষান্তর করে] বা, বা, বা, [উভয়পক্ষকে ২ দ্বারা ভাগ করে] বা, x2 + 6x + 8 = x2 + 4x + 3 [আড়গুণন করে] বা, x2 + 6x – x2 – 4x = 3 – 8 বা, 2x = – 5 ∴x = – (Ans.) প্রশ্ন \ ৫ \ সমাধান : দেওয়া আছে, বা, বা, [পক্ষান্তর করে] বা, বা, বা, [উভয়পক্ষকে দ্বারা ভাগ করে] বা, x – a = – x + b [আড়গুণন করে] বা, x + x = a + b বা, 2x = a + b ∴ x = প্রশ্ন \ ৬ \ সমাধান : দেওয়া আছে, বা, বা, বা, বা, বা, এখানে, [∴ চলক বর্জিত রাশি] ∴ x – a – b = 0 = a + b (Ans.) প্রশ্ন \ ৭ \ সমাধান : দেওয়া আছে, বা, বা, বা, বা, x – a + x – b = 0 [উভয় পক্ষকে দ্বারা গুণ করে] বা, 2x = a + b ∴ x = নির্ণেয় সমাধান : x = প্রশ্ন \ ৮ \ সমাধান : দেওয়া আছে, বা, [পক্ষান্তর করে] বা, বা, [উভয়পক্ষকে ৩ + ৩ দ্বারা ভাগ করে] বা, ∴ (Ans.) 👉 সমাধান সেট নির্ণয় কর (১১ – ১৯) : প্রশ্ন \ ৯ \ সমাধান : দেওয়া আছে, বা, [পক্ষান্তর করে] বা, বা, বা, [উভয়পক্ষকে -১ দ্বারা গুণ করে] ∴ নির্ণেয় সমাধান সেট, প্রশ্ন \ ১০ \ সমাধান : দেওয়া আছে, বা, বা, বা, বা, 1 = 2 যা অসম্ভব ∴ এ সমীকরণে কোনো সমাধান নেই। নির্ণেয় সমাধান সেট,S = { } বা ∅ প্রশ্ন \ ১১ \ সমাধান : দেওয়া আছে, বা, বা, বা, বা, [উভয়পক্ষকে x –1) দ্বারা গুণ করে] বা, 2x = – x – 1 [আড়গুণন করে] বা, 2x + x = – 1 বা, 3x = – 1 ∴ x = – নির্ণেয় সমাধান সেট, S = – প্রশ্ন \ ১২ \ সমাধান : দেওয়া আছে, বা, বা, [পক্ষান্তর করে] বা, বা, বা, বা, [উভয়পক্ষকে দিয়ে ভাগ করে] বা,– m + x = n – x বা, x + x = m + n বা, 2x = m + n ∴ x = নির্ণেয় সমাধান সেট, S = {} প্রশ্ন \ ১৩ \ সমাধান : দেওয়া আছে, বা, [পক্ষান্তর করে] বা, বা, বা, (x + 4) (x + 5) = (x + 2) (x + 3) [আড়গুণন করে] বা, x2 + 9x + 20 = x2 + 5x + 6 বা, x2 + 9x – x2 -5x = 6 – 20 [পক্ষান্তর করে] বা, 4x = – 14 বা, x = – ∴ x = – নির্ণেয় সমাধান সেট, S = প্রশ্ন \ ১৪ \ সমাধান : দেওয়া আছে, বা, [পক্ষান্তর করে ] বা, বা, বা, বা, – 12 + 5t = 90 – 12t [আড়গুণন করে] বা, 5t + 12t = 90 + 12 [পক্ষান্তর করে ] বা, 17t = 102 বা, t = ∴ t = 6 নির্ণেয় সমাধান সেট, S = {6} 👉 সমীকরণ গঠন করে সমাধান কর (২০ – ২৭) : প্রশ্ন \ ১৫ \ একটি সংখ্যা অপর একটি সংখ্যার গুণ। সংখ্যা দুইটির সমষ্টি ৯৮ হলে, সংখ্যা দুইটি নির্ণয় কর। সমাধান : ধরি, একটি সংখ্যা x তাহলে অপর সংখ্যা x প্রশ্নানুসারে, বা, বা, 7x = 490 বা, x = ∴x = 70 ∴ একটি সংখ্যা x = 70এবং অপর সংখ্যা = নির্ণেয় সংখ্যা দুটি ৭০ এবং ২৮. প্রশ্ন \ ১৬ \ একটি প্রকৃত ভগ্নাংশের লব ও হরের অন্তর ১; লব থেকে ২ বিয়োগ ও হরের সাথে ২ যোগ করলে যে ভগ্নাংশটি পাওয়া যাবে, তা এর সমান। ভগ্নাংশটি নির্ণয় কর। সমাধান : ধরি, প্রকৃত ভগ্নাংশের লব =x ∴প্রকৃত ভগ্নাংশের হর
এসএসসি সাধারণ গণিত অনুশীলনী ৫.১ এক চলকবিশিষ্ট সমীকরণ প্রশ্ন সমাধান Read More »