এসএসসি সাধারণ গণিত অনুশীলনী ১৩.১ প্রশ্ন সমাধান
নবম-দশম শ্রেণির বা এসএসসি সাধারণ গণিত অনুশীলনী ১৩.১ প্রশ্ন সমাধান নিচে দেওয়া হলো। এসএসসি গণিত অনুশীলনী ১৩.১ প্রশ্ন সমাধান ১. 13+20+27+34+….+111 ধারাটির পদ সংখ্যা কত? ক) 10 খ) 13 গ) 15 ঘ) 20 উত্তরঃ গ ২. 5+8+11+14+…+62 ধারাটি (i) একটি সসীম ধারা (ii) একটি গুণোত্তর ধারা (iii) এর 19 তম পদ 59 নিচের কোনটি সঠিক? ক) i ও ii খ) i ও iii গ) ii ও iii ঘ) i, ii ও iii উত্তরঃ খ নিচের তথ্যের আলোকে ৩-৪ নং প্রশ্নের উত্তর দাও। 7+13+19+25+…….. একটি ধারা। ৩. ধারাটির 15 তম পদ কোনটি? ক) 85 খ) 91 গ) 97 ঘ) 104 উত্তরঃ খ ৪. ধারাটির প্রথম 20 টি পদের সমষ্টি কত? ক) 141 খ) 1210 গ) 1280 ঘ) 2560 উত্তরঃ গ প্রশ্ন \ 5 \ 2 – 5 – 12 – 19 – ………. ধারাটির সাধারণ অন্তর এবং 12তম পদ নির্ণয় কর| সমাধান : প্রদত্ত ধারাটি, 2 – 5 – 12 – 19 -….. এটি একটি সমান্তর ধারা, hযার প্রথম পদ, a = 2 ∴সাধারণ অন্তর, d = – 5 – 2 = – 7 ∴ 12 তম পদ = a + (12 – 1) d = 2 + 11 × ( -7) = 2 – 77 = – 75 নির্ণেয় ধারাটির সাধারণ অন্তর – 7 এর 12 তম পদ -75. প্রশ্ন \ 6 \ 8 + 11 + 14 + 17 + …….. ধারাটির কোন পদ 392 ? সমাধান : প্রদত্ত ধারাটি, 8 + 11 + 14 + 17 +…….. এটি একটি সমান্তর ধারা, hযার প্রথম পদ, a = 8 সাধারণ অন্তর, d = 11 – 8 = 3 মনে করি, n তম পদ = 392 n তম পদ = a + (n – 1)d ∴ a + (n -1) d = 392 বা, 8 + (n – 1) × 3 = 392 বা, (n – 1) × 3 = 392 – 8 বা, n – 1 = 384/3 বা, n = 128 + 1 ∴ n = 129 ∴ ধারাটির 129তম পদ 392. প্রশ্ন \ 7 \ 4 + 7 + 10 + 13 + ……….. ধারাটির কোন পদ 301 ? সমাধান : প্রদত্ত ধারাটি, 4 + 7 + 10 + 13 + ……….. এটি একটি সমান্তর ধারা, যার প্রথম পদ, a = 4 সাধারণ অন্তর, d = 7 – 4 = 3 মনে করি, nতম পদ = 301 n তম পদ = a + (n -1)d ∴ a + (n – 1)d = 301 বা, 4 + (n -1) × 3 = 301 বা, (n -1) × 3 = 301 – 4 বা, n -1 =297/3 বা, n = 99 + 1 ∴ n = 100 ∴ ধারাটির 100তম পদ 301. প্রশ্ন \ 8 \ কোনো সমান্তর ধারার m তম পদ n ও n তম পদ m হলে, (m + n) তম পদ কত? সমাধান : মনে করি, সমান্তর ধারার প্রথম পদ = a এবং সাধারণ অন্তর = d ∴ ধারাটির mতম পদ = a + (m – 1) d ” n তম পদ = a + (n – 1) d শর্তানুসারে a + (m -1) d = n ………………… (i) এবং a + (n -1) d = m ……………….. (ii) সমীকরণ (i) হতে (ii) বিয়োগ করে পাই, (m – 1 – n + 1) d = n – m বা, (m – n) d = – (m – n) বা, d = ∴ d = – 1 ∴ ধারাটির (m + n)তম পদ = a + (m + n -1) d = a + {(m – 1) + n} d = a + (m – 1)d + nd = n + n(- 1) [∵ a + (m – 1) d = n এবং d = – 1] = n – n = 0 নির্ণেয় (m + n) তম পদ 0. প্রশ্ন \ 9 \ 1 + 3 + 5 + 7 + … … … ধারাটির n পদের সমষ্টি কত? সমাধান : প্রদত্ত ধারা, 1 + 3 + 5 + 7 + … … … এটি একটি সমান্তর ধারা, hযার প্রথম পদ, a = 1 সাধারণ অন্তর, d = 3 – 1= 2 এবং পদ সংখ্যা = n ∴ প্রদত্ত ধারার সমষ্টি, Sn = n/2{2a + (n – 1) d} = n/2{2 × 1 + (n – 1).2} [মান বসিয়ে] = n/2 (2+2n-2) = n/2× 2n = n2 নির্ণেয় ধারাটির n পদের যোগফল n2. প্রশ্ন \ 10 \ 8 + 16 + 24 + …………. ধারাটির প্রথম 9টি পদের সমষ্টি কত? সমাধান : প্রদত্ত ধারা, 8 + 16 + 24 + …………. এটি একটি সমান্তর ধারা hযার প্রথম পদ a = 8 এবং সাধারণ অন্তর d = 16 – 8 = 8 ∴ধারাটির 9টি পদের সমষ্টি, S9 = 9/2{2a + (9 – 1) d} = 9/2(2a + 8d) = 9/2(2 × 8 + 8 × 8) = 9/2(16 + 64) = 9/2× 80 = 9 × 40 = 360 ∴ ধারাটির প্রথম 9টি পদের সমষ্টি 360. প্রশ্ন \ 11 \ 5 + 11 + 17 + 23 + …………… + 59 = কত? সমাধান : প্রদত্ত ধারা, 5 + 11+ 17 + 23 + …… + 59 এটি একটি সমান্তর ধারা, যার প্রথম পদ, a = 5 সাধারণ অন্তর, d = 11– 5 = 17 – 11 = 6 শেষ পদ, p = 59 ধরি, ধারাটির পদ সংখ্যা = n ∴ n তম পদ = a + (n – 1)d কিন্তু n তম পদ = শেষ পদ = 59 অর্থাৎ, 5 + (n – 1) 6 = 59 বা, 5 + 6n – 6 = 59 বা, 6n – 1 = 59 বা, 6n = 59 + 1 বা, n = 60/6= 10 ∴ সমষ্টি, S = n/2{2a + (n – 1)d} = 10/2{2 × 5 + (10 – 1).6} [এর মান বসিয়ে] = 5 (10 + 9 × 6) = 5 (10 + 54) = 5 × 64 = 320 নির্ণেয় সমষ্টি 320. প্রশ্ন \ 12\ 29 + 25 + 21 + … … … – 23 = কত? সমাধান : প্রদত্ত ধারা, 29 + 25 + 21 + … … … – 23 এটি একটি সমান্তর ধারা, যার ১ম পদ, a = 29 সাধারণ অন্তর,
এসএসসি সাধারণ গণিত অনুশীলনী ১৩.১ প্রশ্ন সমাধান Read More »